nNOS and eNOS modulate cGMP formation and vascular response in contracting fast-twitch skeletal muscle.
نویسندگان
چکیده
Nitric oxide (NO) from Ca(2+)-dependent neuronal nitric oxide synthase (nNOS) in skeletal muscle fibers may modulate vascular tone by a cGMP-dependent pathway similar to NO derived from NOS in endothelial cells (eNOS). In isolated fast-twitch extensor digitorum longus (EDL) muscles from control mice, cGMP formation increased approximately 166% with electrical stimulation (30 Hz, 15 s). cGMP levels were not altered in slow-twitch soleus muscles. The NOS inhibitor N(omega)-nitro-l-arginine abolished the contraction-induced increase in cGMP content in EDL muscles, and the NO donor sodium nitroprusside (SNP) increased cGMP content approximately 167% in noncontracting EDL muscles. SNP treatment but not electrical stimulation increased cGMP formation in muscles from nNOS(-/-) mice. cGMP formation in control and stimulated EDL muscles from eNOS(-/-) mice was less than that obtained with similarly treated muscles from control mice. Arteriolar relaxation in contracting fast-twitch mouse cremaster muscle was attenuated in muscles from mice lacking either nNOS or eNOS. These findings suggest that increases in cGMP and NO-dependent vascular relaxation in contracting fast-twitch skeletal muscle may require both nNOS and eNOS.
منابع مشابه
Nitric oxide contributes to vascular smooth muscle relaxation in contracting fast-twitch muscles.
During skeletal muscle contraction, NO derived from neuronal nitric oxide synthase (nNOS) in skeletal muscle fibers or from endothelial cells (eNOS) may relax vascular smooth muscle contributing to functional hyperemia. To examine the relative importance of these pathways, smooth muscle myosin regulatory light chain (smRLC) phosphorylation was assessed as an index of vascular tone in isolated e...
متن کاملEffect of progressive resistance exercise on β1 integrin and vinculin protein levels in slow-and fast-twitch skeletal muscles of male rats
Introduction: Skeletal muscle is a flexible and ever changing tissue and the role of costameric proteins in its response to different stimuli is not well defined. The aim of this study was to investigate the effect of progressive resistance exercise on β1 integrin and vinculin proteins in fast and slow twitch skeletal muscles of male rats. Methods: Twelve male Wistar rats (weight: 298±5.2 gr...
متن کاملThe Effect of Intensive Endurance Activity on Myocyte Enhancer Factor 2C Gene Expression of Slow and Fast Twitch Muscles in Male Wistar Rats: An Experimental Study
Background and Objectives: Myocyte enhancer factor 2c activates the genes of the slow-twitch muscle, the muscle which plays role in endurance activity. Therefore, the aim of this study was to evaluate the effect of a program of intensive endurance activity on MEF2c gene expression in fast and slow twitch skeletal muscles in wistar rats. Materials and Methods: In this experimental study, 14 mal...
متن کاملNitric oxide synthase complexed with dystrophin and absent from skeletal muscle sarcolemma in Duchenne muscular dystrophy
Nitric oxide (NO) is synthesized in skeletal muscle by neuronal-type NO synthase (nNOS), which is localized to sarcolemma of fast-twitch fibers. Synthesis of NO in active muscle opposes contractile force. We show that nNOS partitions with skeletal muscle membranes owing to association of nNOS with dystrophin, the protein mutated in Duchenne muscular dystrophy (DMD). The dystrophin complex inter...
متن کاملThe Effect of High and Low-Intensity Interval Training on TRF1 and TRF2 Gene Expression in Slow and Fast-Twitch Skeletal Muscles of C57BL/6 Mice: An Experimental Study
Background and Objectives: The process of chronic diseases and aging is associated with reduced telomere length. The aim of this study was to investigate the effect of high-intensity interval training (HIIT) and low-intensity interval training (LIIT) on telomere repeat binding factor 1 and 2 (TRF1 and TRF2) in Soleus (SOL) muscle as a slow-twitch (ST) and Extensor Digitorum Longus (EDL) muscle ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physiological genomics
دوره 2 1 شماره
صفحات -
تاریخ انتشار 2000